Maths = JEU?

Des versions téléchargeables de cette activité sont disponibles dans
les formats suivants :

(RTF, PDF)


ImageLes personnes qui aiment les mathématiques disent souvent que résoudre un problème de maths, c’est comme un jeu : il y a un défi à relever, il faut réfléchir pour élaborer une stratégie… et on trouve autant de plaisir à chercher la solution qu’à la trouver!

Nota : Dans cette activité, on utilise un échantillon aléatoire de résultats canadiens tirés de l’enquête Recensement à l’école de 2006-2007. Puisque la question de l’emploi du temps n’a pas été incluse dans les questionnaires plus récents, vous ne pourrez pas utiliser les données de votre classe dans le cadre de cette activité.

Est-ce que les personnes qui aiment les mathématiques apprécient particulièrement les jeux?

Pour répondre à cette question, on peut analyser les données de l’enquête Recensement à l’école portant sur le temps consacré à jouer aux jeux vidéos ou informatiques et aux jeux de société ou de cartes. (Voir la question no 17 du
« Questionnaire–secondaire 3 à 5 » de 2006-2007 dans le site www.recensementecole.ca, sous la rubrique « Enquête »)

Nous allons comparer le temps consacré en une semaine à jouer

  • chez les personnes déclarant que les mathématiques sont leur matière préférée;
  • chez celles qui préfèrent une autre matière.

À partir des données canadiennes de l’enquête Recensement à l’écolede 2006-2007, constituez un large échantillon aléatoire composé de 200 élèves. Visitez le site www.recensementecole.ca, puis cliquez sur Données et résultats et sous la rubrique Résultats internationaux et échantillons aléatoires de données, cliquez sur échantillonneur aléatoire international. Déroulez l’écran et cliquez sur Sélectionnez les données. Choisissez ensuite Canada, puis Phase 4 secondaire (06/07).

Ensuite, triez selon l’âge les données obtenues et sélectionnez un échantillon d’élèves du même âge.

Divisez l’échantillon en deux groupes, soit les élèves qui déclarent que les mathématiques sont leur matière préférée et ceux qui préfèrent une autre matière. Pour chacun de ces deux groupes d’élèves :

  • Calculez d’abord le temps moyen consacré à jouer.
  • Étudiez ensuite la distribution du temps consacré à jouer en créant un histogramme.
    • Comment choisirez-vous l’amplitude des classes?
    • Quels renseignements supplémentaires vous apportent l’histogramme par rapport au temps moyen?
  • Déterminez les différents quartiles.
  • Calculez l’écart-type du temps consacré à jouer.

Quelles relations pouvez-vous établir :

  • entre l’histogramme et les quartiles?
  • entre l’histogramme et l’écart-type?

Observez-vous une différence significative entre les deux groupes? Les différences entre les groupes (pour le temps moyen, les quartiles, l’écart-type et l’histogramme) pourraient-elles être attribuables seulement au hasard?

La différence serait-elle plus marquée pour une des deux catégories de jeux (jeux vidéos et informatiques ou jeux de société et de cartes)?

Pouvez-vous conclure que :

  • les personnes qui aiment les mathématiques jouent plus?
  • le fait d’aimer les mathématiques peut amener à jouer davantage?
  • jouer davantage peut aider à faire aimer les mathématiques?

Expliquez votre raisonnement pour chacune de ces hypothèses.


Définitions

Échantillon aléatoire :L’échantillonnage probabiliste (ou aléatoire) entraîne la sélection d’un échantillon à partir d’une population, sélection qui repose sur le principe de la randomisation (la sélection au hasard ou aléatoire) ou la chance.

Voir aussi : www.statcan.ca/francais/edu/power/ch13/probability/probability_f.htm

Temps moyen :Somme de toutes les valeurs de temps observées, divisée par le nombre d’observations.

Histogramme :L’histogramme est utilisé pour résumer des données discrètes ou continues mesurées dans une échelle d’intervalle. Un histogramme sépare les valeurs possibles des données en classes ou groupes. Pour chaque groupe, on construit un rectangle dont la base correspond aux valeurs de ce groupe, et dont la taille est proportionnelle au nombre d’observations dans le groupe. Un histogramme a une apparence semblable au graphique à barres verticales, mais lorsque les variables sont continues, il n’y a pas d’écart entre les barres. Lorsque les variables sont discrètes, des écarts devraient être laissés entre les barres.

Voir aussi : www.statcan.ca/francais/edu/power/ch9/histograms/histo_f.htm

Quartiles :La médiane divise les données en deux ensembles égaux.

  • Le quartile inférieur (qu’on indique par Q1) est la valeur du milieu du premier ensemble. Dans ce premier quartile, 25 % des valeurs sont inférieures à Q1 et 75 % lui sont supérieures.
  • Le quartile supérieur (qu’on indique par Q3) est la valeur du milieu du deuxième ensemble. Dans ce troisième quartile, 75 % des valeurs sont inférieures à Q3 et 25 % lui sont supérieures..

La médiane (qu’on indique par Q2) est le deuxième quartile.

Voir aussi : www.statcan.ca/francais/edu/power/ch12/range_f.htm

Écarts-types :La variance (symbolisée par S2) et l’écart-type (la racine carré de la variance, symbolisée par S) sont les mesures de dispersion les plus couramment utilisées. On définit la variance d’une variable discrète composée de n observations comme suit :

La formule pour calculez la variance d'une variable discrète.

L’écart-type d’une variable discrète composée de n observations est la racine carrée positive des variances et se définit comme suit :

La formule pour calculez l'eacute;cart-type d'une variable discrète

Voir aussi : www.statcan.ca/francais/edu/power/ch12/variance_f.htm

Contribution de France Caron, Université de Montréal et Linda Gattuso, Université du Québec à Montréal.

This entry was posted in Activites pedagogiques, Secondaire 3 à 5 and tagged . Bookmark the permalink.